

LPG
Liquefied petroleum gas (also called LPG, LP Gas, or autogas) is a mixture of hydrocarbon gases used as a fuel in heating appliances and vehicles, and increasingly replacing chlorofluorocarbons as an aerosol propellant and a refrigerant to reduce damage to the ozone layer.
LPG mixes may be primarily propane, primarily butane, or the more common mixes including both propane and butane, depending on the season. In winter more propane, in summer more butane. Propylene and butylenes are usually also present in small concentration. A powerful odorant, ethanethiol, is added so that leaks can be detected easily. The international standard is EN 589.
LPG is synthesised by refining petroleum or 'wet' natural gas, and is usually derived from fossil fuel sources, being manufactured during the refining of crude oil, or extracted from oil or gas streams as they emerge from the ground. LPG is considered a "clean fuel" as it burns cleanly with no soot and very few sulfur emissions, posing no ground or water pollution hazards. LPG has a typical specific calorific value of 46.1 MJ/kg compared to 42.5 MJ/kg for diesel and 43.5 MJ/kg for premium grade petrol (gasoline). However, its energy density per unit volume is lower than either petrol or diesel.
At normal temperatures and pressures, LPG will evaporate. Because of this, LPG is supplied in pressurised steel bottles. In order to allow for thermal expansion of the contained liquid, these bottles are not filled completely; typically, they are filled to between 80% and 85% of their capacity. The ratio between the volumes of the vaporised gas and the liquefied gas varies depending on composition, pressure and temperature, but is typically around 250:1. The pressure at which LPG becomes liquid, called its vapour pressure, likewise varies depending on composition and temperature.
LNG
Liquefied natural gas (LNG) is predominantly methane, CH4, with some mixture of ethane C2H6, that has been converted to liquid form for ease and safety of non-pressurized storage or transport. It takes up about 1/600th the volume of natural gas in the gaseous state (at standard conditions for temperature and pressure). It is odorless, colorless, non-toxic and non-corrosive. The liquefaction process involves removal of certain components, such as dust, acid gases, helium, water, and heavy hydrocarbons, which could cause difficulty downstream. The natural gas is then condensed into a liquid at close to atmospheric pressure by cooling it to approximately −162 °C (−260 °F); maximum transport pressure is set at around 25 kPa (4 psi).
Natural gas is mainly converted in to LNG for purpose of easy transportation over the seas. LNG achieves a higher reduction in volume than compressed natural gas (CNG) so that the (volumetric) energy density of LNG is 2.4 times greater than that of CNG (at 250 bar) or 60 percent that of diesel fuel. This makes LNG cost efficient in marine transport over long distances. LNG is principally used for transporting natural gas to markets, where it is regasified and distributed as pipeline natural gas.
RNGS supplies LPG and LNG based on confirmed orders.